Princeton Center for Heliophysics Heliophysics Seminar December 4, 2020

Solar Wind Turbulence: in-situ observations from magneto-fluid to kinetic plasma scales

Olga Alexandrova
olga.alexandrova@obspm.fr
LESIA, Observatoire de Paris, France

The solar wind

- Expansion of the solar corona in interplanetary space
- Best natural laboratory of astrophysical plasmas, which can be explored with space missions

- Essentially electrons and protons (~5% of heavier ions)
- Supersonic and superalfvénic in interplanetary space (mean speed ~500 km/s)
- Mean temperature (e⁻,p⁺) at 1 AU ~20 eV
- Mean density at 1 AU ~5 cm⁻³
- Few collisions (1 collision/1 AU) \Rightarrow viscosity \sim 0 \Rightarrow magnetic field is frozen in plasma

Interplanetary magnetic field

Ulysses First Orbit

[McComas et al., GRL, 1998]

closed magnetic field lines slow wind streamer stalk coronal streamer

Parker Spiral

Magnetic field is turbulent

Leonardo da Vinci, Studies of water (1510-1512)

The fall of a stream of water from a sluice into a pool

Turbulence?

Locally unpredictable, but statistical properties are predictable and universal

Energy cascade in the Fourier space (Kolmogorov, 1941):

- velocity field energy has a universal spectrum $\sim k^{-5/3}$
- inertial range: scale invariance, same physics at all scales *l*

Intermittency in fluid turbulence

- Scale dependent non-Gaussianity of turbulent fluctuations
- Appearance of coherent structures

Filaments of vorticity (3D HD simulations & observations)

- length $\sim L_{injection}$ (L)
- cross-section $\sim L_{dissipation} (l_d)$

Turbulence in space plasmas

- 1. Presence of a mean magnetic field $B_0 \Rightarrow$ anisotropy of turbulent fluctuations
- 2. Plasma waves: Alfvén, magnetosonic, mirror, whistlers, kinetic Alfvén waves (KAW), etc... (wave turbulence)
- 3. Nearly no collisions: mean free path ~ 1 AU
- 4. In plasmas there is a number of characteristic space and temporal scales

$$\Omega_{ci}, \rho_i, \lambda_i; \quad \Omega_{ce}, \rho_e, \lambda_e; \quad \lambda_D$$

Plasma scales (solar wind at 1 AU)

• Larmor radius $(\rho_{i,e})$ and cyclotron frequency $(\Omega_{ci,e})$ of a charged particle (electron or ion=proton) in a magnetic field B:

$$\rho_{i,e} = \frac{V_{\perp i,e}}{\Omega_{ci,e}} \; ; \; \Omega_{ci,e} = 2\pi f_{ci,e} = \frac{eB}{m_{i,e}c}$$

$$\rho_{i=p} \simeq 50 \; km; \; f_{ci} \simeq 0.1 \; Hz$$

$$\rho_{e} \simeq 1 \; km; \; f_{ce} \simeq 300 \; Hz$$

• Inertial length $\lambda_{i,e}$ (demagnetization scale of particles) and plasma frequency (ω_p):

$$\lambda_{i,e} = \frac{c}{\omega_{pi,e}} ; \ \omega_{pi,e}^2 = 2\pi f_{pi,e} = \frac{4\pi ne^2}{m_{i,e}}$$
$$\lambda_{i=p} \simeq 40 - 150 \ km; \quad f_{pi} \simeq 450 \ Hz$$
$$\lambda_e \simeq 1 - 3 \ km; \quad f_{pe} \simeq 20 \ kHz$$

• Debye length λ_D (sphere of influence of a given test charge in a plasma); at L> λ_D plasma is quasi-neutral:

Turbulence in space plasmas

- 1. Presence of a mean magnetic field $B_0 \Rightarrow$ anisotropy of turbulent fluctuations
- 2. Plasma waves: Alfven, magnetosonic, mirror, whistlers, kinetic Alfven waves (KAW), etc... (wave turbulence)
- 3. Nearly no collisions: mean free path ~ 1 AU
- 4. In plasmas there is a number of characteristic space and temporal scales

- Is there a certain degree of generality in space plasma turbulence ?
- Similarities with HD (spectra & intermittency)?

Magnetic turbulent spectrum in the solar wind

Example of satellite data:

[Lion et al. 2016]

Magnetic fluctuations cover 8 decades in frequencies/scales and ~14 decades in power spectral density:

Kolmogorov scaling within the inertial range (5/3=1.67)

[Alexandrova et al. 2012]

Taylor hypothesis:
$$\omega_{obs} = \mathbf{k} \cdot \mathbf{V} = kV \cos(\Theta_{kV})$$

$$\omega_{obs} = kV \rightarrow k = 2\pi f/V$$
 \longrightarrow f^{-5/3} ~ k^{-5/3}

Magnetic turbulence and wave vector anisotropy

$$\omega_{obs} = \mathbf{k} \cdot \mathbf{V} = kV \cos(\Theta_{kV})$$

'Critical Balance' model [Goldreich and Sridhar, 1995]:

- Incompressible Alfvénic turbulence ($\delta B \sim \delta V$)
- Balance between linear Alfvén time (along B₀)
 and non-linear time (in plane perp. to B₀)

$$au_A = rac{\ell_\parallel}{V_A} \sim au_{NL} = rac{\ell_\perp}{\delta V_\perp}$$

$$P(k_{\perp}) \sim k_{\perp}^{-5/3} \; ; \; P(k_{\parallel}) \sim k_{\parallel}^{-2}$$

- But, observations show that
 - Velocity spectra do not follow magnetic spectra (expected for Alfven waves)
 - Compressibility...

Magnetic turbulent spectrum in the solar wind

Magnetic turbulent spectrum Inertial range – ion scales

[Leamon et al,1998] Wind/MAG

- 1. MHD scales: f^{-5/3} spectrum
- 2. There exist a spectral "break" close to ion scales \Rightarrow
- starting point of a small scale cascade [e.g., Biskamp et al, 1996; Galtier, 2006; Alexandrova et al. 2007, 2008, 2013] or
- onset of dissipation range [e.g., Leamon et al., 1998, 1999, 2000; Smith et al., 2006,...]?
- If dissipation range ⇒ Why a power law and not an exponential cut-off?

Magnetic turbulent spectrum Inertial range – ion scales

[Leamon et al,1998] Wind/MAG

- 1. Well defined spectrum within the inertial range
- 2. Spectral index at ion scales is very variable: between -2 and -4 (no general behavior)
- What happens at higher frequencies not resolved by MAG instruments?

Helios mission DLR/NASA 1974-1984

[Denskat et al., 1983]

- Radial evolution between 0.3 and 1.0 AU
- Magnetic field measurements with MAG and SCM
- Spectral break around the gap at ion scales (2-4.7 Hz)
- For f > 4.7 Hz (sub-ion scales) and up to 400 Hz, spectral index of ~ 3 is observed at 0.3 AU

Cluster mission ESA/NASA, 4 s/c, since 2000

- Multi-satellite mission to study magnetosphere/solar wind connection
- Cluster is in the free solar wind when the field/flow angle is quasi-perpendicular ($Q_{BV} > 65^{\circ}$)
- Otherwise, Cluster is connected to the bow-shock => shock physics and not solar wind turbulence.
- Thus, with Cluster we can resolve k_{perp} fluctuations
- STAFF (LPP/LESIA) is the most sensitive instrument by today to measure kinetic plasma scales

Magnetic spectra at kinetic scales in the solar wind

It seems that the spectra are not universal at all...

Background turbulence vs whistler waves

background turbulence with k ⊥ to B and f~0 [Lacombe et al. 2017]

Breaks & Bumps: whistlers with k||B, f ~ (0.1-0.3)f_{ce}

Turbulent spectrum from MHD to electron scales

[Alexandrova et al. 2009, PRL; 2013, SSR]

$$\beta_p = \frac{nkT_p}{B^2/8\pi}$$

$$f_{\rho_e} = V/2\pi\rho$$

$$\rho_e = \frac{V_{th,e}}{2\pi f_{ce}}$$

$$k_{\rho_e} = 1/\rho_e$$

- Superposition of different spectra at sub-ion scales seems to indicate general behaviour : spectrum $\sim k_{perp}^{-2.8}$
- End of the cascade? Dissipation scales?

Dissipation scale?

[Alexandrova et al. 2009, PRL] Cluster/FGM+STAFF data

Quasi-stationary turbulence

- energy transfer rate ε = energy dissipation rate ε_d
- $\varepsilon = \eta^3 l_d^{-4}$, where l_d is dissipation scale, η is viscosity
- amplitude of the spectrum $P_0 \sim \varepsilon^{2/3} \sim l_d^{-8/3}$

Universal Kolmogorov's function

[Frisch, Turbulence: the legacy of Kolmogorov, 1995]

$$E(k)\ell_d/\eta^2 = F(k\ell_d)$$

 ℓ_d : dissipation scale

 η : viscosity

In HD turbulence, this normalization collapses spectra measured under different conditions.

Dissipation scale?

Universal Kolmogorov's function:

$$E(k)\ell_d/\eta^2 = F(k\ell_d)$$

Let us try to apply this kind of normalization for solar wind spectra

and for different candidates for the dissipation scale:

- Assumption: η =Const
- $\kappa \rho_i \& \kappa \lambda_i$ normalizations are not efficient for collapse
- $\kappa \rho_{\rm e}$ normalization bring the spectra close to each other

[Alexandrova et al., 2009, PRL]

Larger statistical study with Cluster/STAFF

[Alexandrova et al., 2012, APJ]

[Chen, et al., 1993, PRL] dissipation range spectrum in fluids:

$$E(k) = Ak^{-\alpha} \exp\left(-k\ell_d\right)$$

General spectrum at kinetic scales

- For different solar wind conditions we find a general spectrum with "fluid-like" roll-off spectrum at electron scales
- Electron Larmor radius seems to play a role of the dissipation scale in collisionless solar wind [Alexandrova et al., 2009 PRL, 2012 APJ]

$$E(k) = Ak^{-8/3} \exp(-k\rho_e)$$

• Recently, we find similar spectrum closer to the Sun at 0.3 AU, indicating universality of the phenomenon [Alexandrova et al. 2020, under revision]

Kinetic spectra closer to the Sun

[Alexandrova, Jagarlamudi et al. 2020, under review]

$$f_{\rho_e} = \frac{V}{2\pi\rho_e}$$

- We expect that the spectral properties we observe are generic for space plasmas turbulence at sub-ion to electron scales.
- First part of kinetic spectrum (up to ~100 Hz) has been already observed by PSP at 0.17 AU [Bale et al., 2019, Bowen et al. 2020].

NB: PSP/SCM noise is the same as the one at Solar Orbiter/SCM...

What is 'behind' this spectrum?

Physics of the solar wind turbulent cascade

[TenBarge et al. 2013, APJ]

- Inertial range: Alfven waves propagating from the Sun, Critically Balanced turbulence ($\tau_A = \tau_{NL}$)
- Ion transition: Alfven waves become Kinetic Alfven Waves (KAWs), e.g., Schekochihin et al., 2009, Howes et al. 2006, 2008, 2011, Salem et al. 2012, ...
- Sub-ion scales: Critically Balanced KAW turbulence ($\tau_{KAW} \sim \tau_{NL}$), e.g., Boldyrev and Perez 2012, TenBarge et al. 2013, Howes et al.,...
- Dissipation: Landau damping of KAWs, e.g., Howes et al. 2011, TenBarge et al. 2013, Passot & Salem 2015, Schreiner & Saur, 2017

Solar wind turbulence: widely accepted picture

- Inertial range: Alfven waves propagating from the Sun, Critically Balanced turbulence ($\tau_A = \tau_{NL}$)
- Ion transition: Alfven waves become Kinetic Alfven Waves (KAWs), e.g., Schekochihin et al., 09
- Sub-ion scales: Critically Balanced KAW turbulence ($\tau_{KAW} \sim \tau_{NL}$), e.g., Boldyrev and Perez 12
- Dissipation: Landau damping of KAWs, e.g., Howes et al. 11, TenBarge et al. 2013, Passot & Salem 15, Schreiner & Saur, 17

This picture is based on mean properties of turbulent flows, e.g.,:

Spectra are in agreement with Critical Balance

Linear dispersion of KAWs describes the data [Sahraoui et al. 10, Roberts et al., 13]

Compressibility in agreement with KAWs [Lacombe et al. 17, Groselji et al. 19, Matteini et al. 20]

Intermittency in all this?

II. Intermittency in space plasma turbulence

[Sorriso-Valvo et al. 1999]

$$|\Delta \mathbf{b}| = |\mathbf{b}(s + \Delta s) - \mathbf{b}(s)|$$

Definition of coherent structure

- 1. Farge & Schneider (2015): 'Everything that is not noise'
- 2. Inspired by Fiedler (1988) & Lesieur (1993)
- High amplitude event localized in space
- Delocalisation in Fourier space
- Phase coupling over a large range of scales
- Particular topology
- Life time >> life time of random fluctuations at the smallest scale of the structure

Looking for signatures of coherent structures

Increments of magnetic field and Partial Variance of Increments (PVI) Method

PVI
$$(t, \tau) = \frac{|\Delta \boldsymbol{B}(t, \tau)|}{\sqrt{\langle |\Delta \boldsymbol{B}(t, \tau)|^2 \rangle}}$$

[e.g., Veltri & Mangeney 1999, Servidio, et al. 2008, Greco, et al. 2009, 2012, 2014, Perri et al. 2012]

• Are there other types of structures?

Non-Gaussianity: what does it mean?

Cluster-1/STAFF-SC measurements, 2002-02-19

From the observed signal we construct a signal with random phases but with the same spectrum.

[Rossi, Tesi di Lauria, 2011; Hada et al. 2003; Koga & Hada, 2003; Sahraoui, 2008, Einaudi & Velli 1999]

Non-Gaussianity: what does it mean?

[Claudia Rossi, Tesi di Laurea, 2011]

Non-Gaussian tails ⇔ coupled phases!

Wavelet transform and Local Intermittency Measure

Morlet Wavelet Transform

$$W(t,\tau) = \sum_{j=0}^{N-1} B_x(t_j) \psi_0^* [(t_j - t)/\tau]$$
$$\psi_0(t) = \pi^{-1/4} e^{-i\omega_0 t} e^{-t^2/2}$$

Local Intermittency Measure (LIM)

$$I(t,\tau) = \frac{|W(t,\tau)|^2}{\langle |W(t,\tau)|^2 \rangle_t} \quad \text{[Farge 1992]}$$

We observe

- stalactite-like events in wavelet scalogram $W^2(t,\tau)$, see 2nd panel
- Vertical lines in LIM, see 3rd panel

Observed signal vs random phase signal

- LIM of B_{x,rand}: homogeneous energy distribution of the signal in time-scale plane
- Thus, vertical lines in LIM of $B_{x,obs}$ correspond to events with coupled phases \Rightarrow coherent structures?

Signatures of coherent structures from MHD to electron scales

- Vertical lines in LIM : signatures of coherent structures
- They are visible from the onset of the inertial range at $\sim 3\cdot 10^3$ s and up to the smallest resolved scales around electron Larmor radius ρ_e

Coherent structures within the inertial range

At the times of events, in physical space we see

- current sheets
- Alfven vortices (oblique Θ_{BV})

[Lion, Alexandrova & Zaslavskiy, 2016, APJ]

Alfven vortices ~ 2D incompressible HD vortices

Vector potential, A, ~ to stream function ⇒ field lines || stream lines & current || vorticity [Petviashvilli & Pokhotelov, 1992]

$$\frac{\partial_z}{\nabla_{\perp}} \sim \frac{\partial_t}{V_A \nabla_{\perp}} \sim \frac{\delta B_z}{\delta B_{\perp}} \sim \frac{\delta V_z}{\delta V_{\perp}} \sim \frac{\delta B_{\perp}}{B_0} \sim \frac{\delta V_{\perp}}{V_A} \sim \varepsilon. \qquad \delta V_{\perp}/V_A = \xi \delta B_{\perp}/B_0$$

Monopole ~ force free current, standing structure

Dipole ~ two inversed currents, propagates

- First time observed in space plasmas in the Earth's magnetosheath [Alexandrova, Mangeney et al., 2004, 2006, JGR] thanks to 4 satellites of Cluster (and to wavelet transform)
- Then signatures of vortices observed in the Saturne's magnetosheath [Alexandrova & Saur 2008]

Spectral properties of Alfvén vortices

Thus, high amplitude monopolar Alfven vortex present in the signal can explain the steep (-4) spectrum at ion scales in [Leamon 1998], reanalysed by Lion [2016]:

- Spectral knee at $k=a^{-1}$; power law spectra above it
- Monopole $\Rightarrow \delta B^2 \sim k^{-4}$ (due to discontinuity of the current)
- Dipole $\Rightarrow \delta B^2 \sim k^{-6}$ (due to discont. of the current derivative)

Alfven vortices observed in the solar wind with 4 satellites of Cluster

Slow solar wind [Roberts et al. 2016], see also [Perrone et al. 2016]

Fast solar wind [Perrone et al. 2017]

- $k_{perp} >> k_{||}$
- axis aligned with \mathbf{B}_0
- convected by the flow

Other types of structures observed in slow wind

[Perrone et al. 2016]

- Current sheets,
- Solitons,
- Shocks,
- Magnetic holes,
- compressible vortices, with $k_{\text{perp}} >> k_{||}$

Current sheet δB_{\perp}

Soliton $\delta B_{||}$

Compressible vortices (at high ion beta)

[Perrone et al. 2016]

[Jovanovic et al. 2020, APJ]:

Fluid theory of coherent vortices in the space plasmas with anisotropic electron and ion temperatures, and with arbitrary plasma beta.

Generalization of Petviashvili & Pokhotelov (1992) vortices including the diamagnetic and finite Larmor radius effects via Braginskii's collisionless stress tensor, and the compressional magnetic component via a generalized pressure balance.

(For more details see the paper and the PSP theory telecon on Nov.19, 2020.)

Sub-ion and electron scales

-1.0

δBj (nT)

-2

[Alexandrova et al. 2020, arXiv]

 $B_0 = 8(0.3, -0.9, 0.4)$ nT

-0.05

Cluster3/STAFF, 15 Feb.2015, t₀=22:08:50.3 UT

0.00

t (s)

 $\tau = 0.02 \text{ s}$

0.10

0.05

0 t (s)

Cluster3

- Vortex duration ~1 s
- Cluster separations ~200 km
- $\mathbf{k}_{perp} \gg \mathbf{k}_{\parallel}$

-1

Kinetic turbulence is filled with coherent structures ~ vortices

Cluster GI 2015 data:

0.02

0.00

-0.00

-0.02

-0.10

δBj (nT)

- C3-C4 at 7 km distance
- STAFF in burst mode (360 vec/s)
- Electron scales are resolved for the 1st time in the solar wind in time and in space: duration ~ 0.05 s, scale ~ 5 km scale (several ρ_e)
- Can we describe them by EMHD non-linear vortices associated with oblique whistlers [Jovanović et al. 2015, Physica Scripta]?

To summarize

Notwithstanding the complexity of space plasma turbulence:

- a certain degree of generality
- similarities with incompressible neutral fluid turbulence

Results:

- 1. We observe a **general spectrum** of magnetic fluctuations up to electron scales ($l_d \sim \rho_e$)
- 2. Intermittency: not only planar coherent structures, but also $magnetic\ vortices\ up\ l_d$

Open issues & projects

- Topology of coherent structures across the cascade? More systematic study is needed...
 - under different plasma conditions
 - at different radial distances
- Filling factor?
- Stability?
- Interaction of charged particles with coherent structures ⇒ heating of the solar wind?
 - PHD project of Alexander Vinogradov, IKI-LESIA/SU, 2020-2023
- Energy transfers and dissipation? Complete parametrisation of turbulent spectrum?
- New measurements closer to the Sun by Parker Solar Probe and Solar Orbiter will tell us how the picture shown here may change...

